4-BIT SINGLE-CHIP MICROCONTROLLER

The μ PD754304 is one of the "75XL Series" 4-bit single-chip microcontrollers with data processing capability comparable to that of 8 -bit microcontrollers. The μ PD754303(A) has a higher reliability than the μ PD754304.

The microcontrollers in the 75XL Series have expanded CPU functions than those of the 75X Series and can operate at a voltage of as low as 1.8 V ; therefore, they are ideal for battery-driven application systems.

As the one-time PROM version of the μ PD754304, the μ PD75P4308 is ideal for evaluation of a system under development or for small-scale production of application systems.

Detailed information about functions can be found in the following document. Be sure to read the following document before designing.
μ PD754304 User's Manual: U10123E

FEATURES

- Low-voltage operation: $\mathrm{V}_{\mathrm{DD}}=1.8$ to 5.5 V
- Internal memory

Program memory (ROM): 2048×8 bits (μ PD754302, 754302(A)) 4096×8 bits (μ PD754304, 754304(A))
Data memory (RAM): 256×4 bits

- Variable instruction execution time effective for highspeed operation and power saving $0.95,1.91,3.81$, or $15.3 \mu \mathrm{~s}$ (at 4.19 MHz) $0.67,1.33,2.67$, or $10.7 \mu \mathrm{~s}$ (at 6.0 MHz)
- Internal serial interface (1 channel)
- Powerful timer function (3 channels)
- Inherits instruction set of existing 75X Series for easy replacement

APPLICATIONS

- μ PD754302, 754302(A)

Cordless telephones, TVs, VCRs, audio systems, household appliances, office machines, etc.

- μ PD754304, 754304(A)

Automotive appliance, etc.

The μ PD754302 and 754304 differ from the μ PD754302(A) and 754304(A) only in terms of their quality grade. Unless otherwise specified, the μ PD754304 is treated as a representative model in this Data Sheet.

For the models other than the μ PD754304, μ PD754304 can be read as the other model name.
If different descriptions are made for the μ PD754302 and 754304, the (A) models correspond as follows:
$\mu \mathrm{PD} 754302 \rightarrow \mu \mathrm{PD} 754302(\mathrm{~A}), \mu \mathrm{PD} 754304 \rightarrow \mu \mathrm{PD} 754304(\mathrm{~A})$

ORDERING INFORMATION

	Parts Number	Package
μ PD754302GS-×××	36-pin plastic shrink SOP $(300 \mathrm{mil}, 0.8 \mathrm{~mm}$ pitch $)$	Standard
	μ PD754304GS- $\times \times \times$	36-pin plastic shrink SOP $(300 \mathrm{mil}, 0.8 \mathrm{~mm}$ pitch $)$

Remark \times indicates a ROM code number.

Please refer to "Quality Grades on NEC Semiconductor Devices" (Document No. C11531E) published by NEC Corporation to know the specification of quality grade on the devices and its recommended applications.
\star Difference between μ PD75430× and μ PD75430 \times (A)

Item Parts Number	μ PD754302 μ PD754304	μ PD754302(A) μ PD754304(A)
Quality grade	Standard	Special

Functional Outline

CONTENTS

1. PIN CONFIGURATION (Top View) 6
2. BLOCK DIAGRAM 8
3. PIN FUNCTION 9
3.1 Port Pins 9
3.2 Non-port Pins 10
3.3 Pin Input/Output Circuits 11
3.4 Recommended Connections for Unused Pins 13
4. SWITCHING FUNCTION BETWEEN Mk I MODE AND Mk II MODE 14
4.1 Difference between Mk I and Mk II Modes 14
4.2 Setting Method of Stack Bank Select Register (SBS) 15
5. MEMORY CONFIGURATION 16
6. PERIPHERAL HARDWARE FUNCTIONS 20
6.1 Digital Input Ports 20
6.2 Clock Generator 21
6.3 Clock Output Circuit 22
6.4 Basic Interval Timer/Watchdog Timer 23
6.5 Timer/Event Counter 24
6.6 Serial Interface 27
6.7 Bit Sequential Buffer 29
7. INTERRUPT FUNCTION AND TEST FUNCTION 30
8. STANDBY FUNCTION 32
9. RESET FUNCTION 33
^ 10. MASK OPTION 36
10. INSTRUCTION SETS 37
11. ELECTRICAL SPECIFICATIONS 49
12. CHARACTERISTICS CURVES (REFERENCE VALUES) 61
13. PACKAGE DRAWING 63
14. RECOMMENDED SOLDERING CONDITIONS 64
APPENDIX A. COMPARISON OF FUNCTIONS AMONG μ PD750004, 754304, AND 75P4308 65
APPENDIX B. DEVELOPMENT TOOLS 67
APPENDIX C. RELATED DOCUMENTS 70

1. PIN CONFIGURATION (Top View)

36-pin plastic shrink SOP ($300 \mathrm{mil}, 0.8-\mathrm{mm}$ pitch)
μ PD754302GS- $\times x \times, \mu$ PD754302GS(A)-×××
μ PD754304GS-×××, μ PD754304GS(A)-×××

IC: Internally Connected (Connect directly this pin to Vod.)

PIN IDENTIFICATION

```
P00-P03 : PORT0
P10-P13 : PORT1
P20-P23 : PORT2
P30-P33 : PORT3
P50-P53 : PORT5
P60-P63 : PORT6
P70-P73 : PORT7
P80, P81: PORT8
KR0-KR7: Key Return 0-7
SCK : Serial Clock
SI : Serial Input
SO : Serial Output
SB0 : Serial data Bus 0
```

RESET	Reset Input
TIO, TI1	Timer Input 0, 1
PTO0, PTO	Programmable Timer Output 0, 1
PCL	Programmable Clock
INT0, 1, 4	External Vectored Interrupt 0, 1, 4
INT2	: External Test Input 2
Vss	: GND
X1, X2	System Clock Oscillation 1, 2
IC	: Internally Connected
Vdd	Positive Power Supply

3. PIN FUNCTION

3.1 Port Pins

Pin Name	Input/Output	Alternate Function	Function	8-bit I/O	After Reset	I/O Circuit TYPE Note 1
P00	Input	INT4	4-bit input port (PORTO). For P01 to P03, on-chip pull-up resistors can be specified by software in 3-bit units.	\times	Input	(B)
P01	Input/Output	SCK				(F)-A
P02	Input/Output	SO/SB0				(F)-B
P03	Input	SI				(B) -C
P10	Input	INTO	4-bit input port (PORT1). On-chip pull-up resistors can be specified by software in 4-bit units. Noise elimination circuit can be selected (Only P10/INTO)	\times	Input	(B) -C
P11		INT1				
P12		INT2				
P13		TIO/TI1				
P20	Input/Output	PTO0	4-bit input/output port (PORT2). On-chip pull-up resistors can be specified by software in 4-bit units.	\times	Input	E-B
P21		PTO1				
P22		PCL				
P23		-				
P30	Input/Output	-	Programmable 4-bit input/output port (PORT3). This port can be specified for input/output bit-wise. On-chip pull-up resistor can be specified by software in 4-bit units.	\times	Input	E-B
P31		-				
P32		-				
P33		-				
P50-P53 Note 2	Input/Output	-	N-ch open-drain 4-bit input/output port (PORT5). A pull-up resistor can be contained bit-wise (mask option). Withstand voltage is 13 V in open-drain mode.	\times	High level (when pull-up resistors are provided) or highimpedance	M-D
P60	Input/Output	KR0	Programmable 4-bit input/output port (PORT6). This port can be specified for input/output bit-wise. On-chip pull-up resistors can be specified by software in 4-bit units.	\checkmark	Input	(F) -A
P61		KR1				
P62		KR2				
P63		KR3				
P70	Input/Output	KR4	4-bit input/output port (PORT7). On-chip pull-up resistors can be specified by software in 4-bit units.		Input	(F) -A
P71		KR5				
P72		KR6				
P73		KR7				
P80	Input/Output	-	2-bit input/output port (PORT8). On-chip pull-up resistors can be specified by software in 2-bit units.	\times	Input	E-B
P81		-				

Notes 1. Circled characters indicate the Schmitt-trigger input.
2. If on-chip pull-up resistors are not specified by mask option (when used as N-ch open-drain input port), low level input leakage current increases when input or bit manipulation instruction is executed.

3.2 Non-port Pins

Pin Name	Input/Output	Alternate Function	Function		After Reset	I/O Circuit TYPE Note
TIO/TI1	Input	P13	Inputs external event pulses to the timer/event counter.		Input	(B)-C
PTO0	Output	P20	Timer/event counter output		Input	E-B
PTO1		P21				
PCL		P22	Clock output			
SCK	Input/Output	P01	Serial clock input/output		Input	(F)-A
SO/SB0		P02	Serial data output Serial data bus input/output			(F)-B
SI	Input	P03	Serial data input			(B)-C
INT4	Input	P00	Edge detection vectored interrupt input (both rising edge and falling edge detection)		Input	(B)
INT0	Input	P10 P11	Edge detection vectored interrupt input (detection edge can be selected). INTO/P10 can select a noise elimination circuit.	Asynchronous with noise elimination circuit can be selected Asynchronous	Input	(B)-C
INT2	Input	P12	Edge detection testable input (rising edge detection)	Asynchronous	Input	(B)-C
KR0-KR3	Input	P60-P63	Testable input (falling edge detection)		Input	(F)-A
KR4-KR7		P70-P73				
X1	Input	-	Crystal/ceramic connection pin for the system clock oscillator. When inputting the external clock, input the external clock to pin X1, and the inverted phase of the external clock to pin X2.		-	-
RESET	Input	-	System reset input (low-level active)		-	(B)
IC	-	-	Internally connected. Connect directly to Vdo.		-	-
VDD	-	-	Positive power supply		-	-
Vss	-	-	Ground potential		-	-

Note Circled characters indicate the Schmitt-trigger input.

3.3 Pin Input/Output Circuits

The μ PD754304 pin input/output circuits are shown schematically.

3.4 Recommended Connections for Unused Pins

Table 3-1. List of Recommended Connections for Unused Pins
\star
\star
\star
\star

Pin	Recommended Connection
P00/INT4	Connect to Vss or Vdd
P01/SCK	Connect to Vss or Vdo through the resistor individually
P02/SO/SB0	
P03/SI	Connect to Vss
P10/INT0-P12/INT2	Connect to Vss or Vid
P13/TI0/TI1	
P20/PTO0	Input state : Connect to VSs or VDD through the resistor individually Output state: Leave open
P21/PTO1	
P22/PCL	
P23	
P30-P33	
P50-P53	Input state : Connect to Vss Output state : Connect to Vss (Pull-up resistor by mask option should not be connected)
P60/KR0-P63/KR3	Input state : Connect to Vss or Vod through the resistor individually Output state: Leave open
P70/KR4-P73/KR7	
P80, P81	
IC	Connect to Vdo directly

4. SWITCHING FUNCTION BETWEEN Mk I MODE AND Mk II MODE

4.1 Difference between Mk I and Mk II Modes

The CPU of μ PD754304 has the following two modes: Mk I and Mk II, either of which can be selected. The mode can be switched by the bit 3 of the stack bank select register (SBS).

- Mk I mode: Can be used in the 75XL CPU with a ROM capacity of up to 16 K bytes.
- Mk II mode: Can be used in all the 75XL CPU's including those products whose ROM capacity is more than 16K bytes.

Table 4-1. Differences between Mk I Mode and Mk II Mode

	Mk I mode	Mk II mode
Number of stack bytes for subroutine instructions	2 bytes	3 bytes
BRA !addr1 instruction CALLA !addr1 instruction	Not available	Available
CALL !addr instruction	3 machine cycles	4 machine cycles
CALLF !faddr instruction	2 machine cycles	3 machine cycles

Caution The Mk II mode supports a program area exceeding 16K bytes in the 75X and 75XL series. This mode can improve software compatibility with products with a program area of more than 16 K bytes.
When Mk II mode is selected, the number of stack bytes when a subroutine call instruction is executed is greater by 1 byte per stack compared with the Mk I mode. When the CALL !addr or CALLF !faddr instruction is used, one more machine cycle is required. To emphasize the efficiency of the RAM and processing speed rather than software compatibility, therefore, use the Mk I mode.

4.2 Setting Method of Stack Bank Select Register (SBS)

Switching between the Mk I mode and Mk II mode can be done by the SBS. Figure 4-1 shows the format. The SBS is set by a 4-bit memory manipulation instruction.
When using the Mk I mode, the SBS must be initialized to 1000B at the beginning of a program. When using the Mk II mode, it must be initialized to 0000B.

Figure 4-1. Stack Bank Select Register Format

Caution Since SBS. 3 is set to "1" after a RESET signal is generated, the CPU operates in the Mk I mode. When executing an instruction in the Mk II mode, set SBS. 3 to " 0 " to select the Mk II mode.

5. MEMORY CONFIGURATION

- Program Memory (ROM) 2048×8 bits (μ PD754302)
.... 4096×8 bits (μ PD754304)
- Addresses 0000 H and 0001 H

Vector table wherein the program start address and the values set for the RBE and MBE at the time a RESET signal is generated are written. Reset and start are possible at an arbitrary address.

- Addresses $0002 \mathrm{H}-000 \mathrm{DH}$

Vector table wherein the program start address and values set for the RBE and MBE by the vectored interrupts are written. Interrupt execution can be started at an arbitrary address.

- Addresses $0020 \mathrm{H}-007 \mathrm{FH}$

Table area referenced by the GETI instruction Note.
Note The GETI instruction realizes a 1-byte instruction on behalf of an arbitrary 2-byte instruction, 3-byte instruction, or two 1-byte instructions. It is used to decrease the program steps.

- Data Memory (RAM)

- Data area 256 words $\times 4$ bits ($000 \mathrm{H}-0 \mathrm{FFH}$)
- Peripheral hardware area 128 words $\times 4$ bits (F80H-FFFH)

Figure 5-1. Program Memory Map (1/2)
(a) μ PD754302

* Note Can be used in the Mk II mode only.

Remark In addition to the above, a branch can be taken to the address indicated by changing only the low-order eight bits of PC by executing the BR PCDE or BR PCXA instruction.

Figure 5-1. Program Memory Map (2/2)
(b) μ PD754304

\star Note Can be used in the Mk II mode only.

Remark In addition to the above, a branch can be taken to the address indicated by changing only the low-order eight bits of PC by executing the BR PCDE or BR PCXA instruction.

Figure 5-2. Data Memory Map

6. PERIPHERAL HARDWARE FUNCTIONS

6.1 Digital Input Ports

The following three types of I/O ports are provided.

- CMOS input (Ports 0,1) : 8
- CMOS I/O (Ports 2, 3, 6 to 8) : 18
- N-ch open-drain I/O (Port 5) : 4

Total 30

Table 6-1. Types and Features of Digital Ports

Port Name	Function	Operation, Features		Remark
PORTO	4-bit input	When serial interface function is used, multiplexed pin has output function depending on operation mode.		Multiplexed with INT4, $\overline{\text { SCK }}$, SO/SBO, and SI pins
PORT1		Input port.		Multiplexed with INTO through INT2 and TIO/TI1 pins.
PORT2	4-bit I/O	Can be set in input or output mode in 4-bit units.		Multiplexed with PTO0, PTO1, and PCL pins.
PORT3		Can be set in input or output mode in 1-bit units.		-
PORT5	4-bit I/O (N -ch opendrain, 13 V)	Can be set in input or output mode in 4-bit units. Pull-up resistor can be connected in 1-bit units by mask option.		
PORT6	4-bit I/O	Can be set in input or output mode in 1 -bit units.	Ports 6 and 7 are used in pairs and can input or output data in 8 -bit units.	Multiplexed with KR0 through KR3 pins.
PORT7		Can be set in input or output mode in 4-bit units.		Multiplexed with KR4 through KR7 pins.
PORT8	2-bit I/O	Can be set in input or output mode in 2-bit units.		-

6.2 Clock Generator

- Clock generator configuration

The clock generator provides the clock signals to the CPU and peripheral hardware and its configuration is shown in Figure 6-1.
The operation of the clock generator is set with the processor clock control register (PCC).
The instruction execution time can be changed.

- $0.95,1.91,3.81,15.3 \mu$ s (system clock operating at 4.19 MHz)
- $0.67,1.33,2.67,10.7 \mu$ s (system clock operating at 6.0 MHz)

Figure 6-1. Clock Generator Block Diagram

Note Instruction execution

Remarks 1. $f x=$ System clock frequency
2. $\Phi=$ CPU clock
3. PCC: Processor Clock Control Register
4. One clock cycle (tcy) of the CPU clock is equal to one machine cycle of the instruction.

6.3 Clock Output Circuit

The clock output circuit outputs clock pulses from the P22/PCL pin, and is used to apply for remote controller waveform output or to supply clock pulse peripheral LSIs.

- Clock output (PCL) : $\Phi, 524,262,65.5 \mathrm{kHz}$ (during 4.19-MHz operation)
$\Phi, 750,375,93.8 \mathrm{kHz}$ (during $6.0-\mathrm{MHz}$ operation)

Figure 6-2. Clock Output Circuit Block Diagram

Remark Special care has been taken in designing the chip so that small-width pulses may not be output when switching clock output enable/disable.

6.4 Basic Interval Timer/Watchdog Timer

The basic interval timer/watchdog timer has the following functions.

- Interval timer operation to generate a reference time interrupt
- Watchdog timer operation to detect a runaway of program and reset the CPU
- Selects and counts the wait time when the standby mode is released
- Reads the contents of counting

Figure 6-3. Basic Interval Timer/Watchdog Timer Block Diagram

Note Instruction execution

6.5 Timer/Event Counter

The μ PD754304 has two channels of timer/event counters. Its configuration is shown in Figures 6-4 and 6-5.

The timer/event counter has the following functions.

- Programmable interval timer operation
- Square wave output of any frequency to the PTOn pin ($\mathrm{n}=0,1$)
- Event counter operation
- Divides the frequency of signal input via the TIn pin to 1-Nth of the original signal and outputs the divided frequency to the PTOn pin (frequency divider operation).
- Supplies the shift clock to the serial interface circuit.
- Reads the count value.

The timer/event counter operates in the following two modes as set by the mode register.

Table 6-2. Operation Modes of Timer/Event Counter

	Channel	Channel 0
Mode	Channel 1	
8-bit timer/event counter mode	\checkmark	\checkmark
16-bit timer/event counter mode	V	

Figure 6-4. Timer/Event Counter (Channel 0) Block Diagram

Figure 6-5. Timer/Event Counter (Channel 1) Block Diagram

Timer/event counter (channel 0) comparator
(When 16-bit timer/event counter mode)

6.6 Serial Interface

The μ PD754304 incorporates the clocked 8 -bit serial interface, and the following three modes are provided.

- Operation stop mode
- 3-wire serial I/O mode
- 2-wire serial I/O mode

Figure 6-6. Serial Interface Block Diagram

6.7 Bit Sequential Buffer

\qquad 16 Bits

The bit sequential buffer (BSB) is a special data memory for bit manipulation and the bit manipulation can be easily performed by changing the address specification and bit specification in sequence, therefore it is useful when processing a long data bit-wise.

The data memory is composed of 16 bits and the pmem.@L addressing of a bit manipulation instruction is possible. The bit can be specified indirectly by the L register. In this case, processing can be done by moving the specified bit in sequence by incrementing and decrementing the L register in the program loop.

Figure 6-7. Bit Sequential Buffer Format

Remarks 1. In the pmem.@L addressing, the specified bit moves corresponding to the L register.
2. In the pmem.@L addressing, the BSB can be manipulated regardless of MBE/MSB specification.

7. INTERRUPT FUNCTION AND TEST FUNCTION

The μ PD754304 has seven kinds of interrupt sources and one kind of test source. Two types of edge detection testable inputs are provided for INT2 of the test source.

The interrupt control circuit of the μ PD754304 has the following functions.

(1) Interrupt function

- Vectored interrupt function for hardware control, enabling/disabling the interrupt acceptance by the interrupt enable flag (IE $\times \times \times$) and interrupt master enable flag (IME).
- Can set any interrupt start address.
- Multiple interrupts wherein the order of priority can be specified by the interrupt priority select register (IPS).
- Test function of interrupt request flag (IRQ×××). An interrupt generated can be checked by software.
- Release the standby mode. A release interrupt can be selected by the interrupt enable flag.

(2) Test function

- Test request flag (IRQxxx) generation can be checked by software.
- Release the standby mode. The test source to be released can be selected by the test enable flag.

Figure 7-1. Interrupt Control Circuit Block Diagram

Note Noise eliminator (Standby release is disabled when noise eliminator is selected.)

8. STANDBY FUNCTION

In order to save dissipation power while a program is in a standby mode, two types of standby modes (STOP mode and HALT mode) are provided for the μ PD754304.

Table 8-1. Operation Status in Standby Mode

Item Mode		STOP mode	HALT mode
Set instruction		STOP instruction	HALT instruction
Operation status	Clock generator	The system clock stops oscillation.	Only the CPU clock Φ halts (oscillation continues).
	Basic interval timer/ Watchdog timer	Operation stops.	Operable (The IRQBT is set in the reference interval).
	Serial interface	Operable only when an external $\overline{\text { SCK }}$ input is selected as the serial clock.	Operable
	Timer/event counter	Operable only when a signal input to the TIO and TI1 pins are specified as the count clock.	Operable
	External interrupt	The INT1, 2, and 4 are operable. Only the INTO is not operated Note.	
	CPU	The operation stops.	
Release signal		Interrupt request signal sent from the operable hardware enabled by the interrupt enable flag or RESET signal input.	

Note Operable only when the noise eliminator is not used (IM02 $=1$) by bit 2 of the edge detection mode register (IMO).

9. RESET FUNCTION

There are two reset inputs: external $\overline{\text { RESET }}$ signal and $\overline{\text { RESET }}$ signal sent from the basic interval timer/ watchdog timer. When either one of the RESET signals are input, an internal RESET signal is generated. Figure $9-1$ shows the circuit diagram of the above two inputs.

Figure 9-1. Configuration of Reset Function

Generation of the $\overline{\text { RESET }}$ signal initializes each hardware as listed in Table 9-1. Figure 9-2 shows the timing chart of the reset operation.

Figure 9-2. Reset Operation by RESET Signal Generation

Note The following two times can be selected by the mask option.
$2^{17} / \mathrm{fx}(21.8 \mathrm{~ms}: ~ @ ~ 6.0 \mathrm{MHz}, 31.3 \mathrm{~ms}: ~ @ ~ 4.19 \mathrm{MHz})$
$2^{15} / \mathrm{fx} \times(5.46 \mathrm{~ms}: ~ @ ~ 6.0 \mathrm{MHz}, 7.81 \mathrm{~ms}: ~ @ 4.19 \mathrm{MHz})$

Table 9-1. Status of Each Hardware After Reset (1/2)

Hardware				$\overline{\mathrm{RESET}}$ signal generation in the standby mode	$\overline{\text { RESET }}$ signal generation in operation
Program counter (PC)			μ PD754302	Sets the low-order 3 bits of program memory's address 0000 H to the PC10-PC8 and the contents of address 0001 H to the PC7-PC0.	Sets the low-order 3 bits of program memory's address 0000 H to the PC10-PC8 and the contents of address 0001 H to the PC7-PC0.
			μ PD754304	Sets the low-order 4 bits of program memory's address 0000 H to the PC11-PC8 and the contents of address 0001 H to the PC7-PCO.	Sets the low-order 4 bits of program memory's address 0000 H to the PC11-PC8 and the contents of address 0001 H to the PC7-PCO.
PSW	Carry flag (CY)			Held	Undefined
	Skip flag (SK0-SK2)			0	0
	Interrupt status flag (IST0, IST1)			0	0
	Bank enable flag (MBE, RBE)			Sets the bit 6 of program memory's address 0000 H to the RBE and bit 7 to the MBE.	Sets the bit 6 of program memory's address 0000 H to the RBE and bit 7 to the MBE.
Stack pointer (SP)				Undefined	Undefined
Stack bank select register (SBS)				1000B	1000B
Data memory (RAM)				Held	Undefined
General-purpose register (X, A, H, L, D, E, B, C)				Held	Undefined
Bank select register (MBS, RBS)				0, 0	0, 0
Basic interval timer/watchdog timer		Counter (BT)		Undefined	Undefined
		Mode register (BTM)		0	0
		Watchdog timer enable flag (WDTM)		0	0
Timer/event counter (TO)		Counter (TO)		0	0
		Modulo register (TMODO)		FFH	FFH
		Mode register (TM0)		0	0
		TOEO, TOUT F/F		0, 0	0, 0
Timer/event counter (T1)		Counter (T1)		0	0
		Modulo register (TMOD1)		FFH	FFH
		Mode register (TM1)		0	0
		TOE1, TOUT F/F		0, 0	0, 0
Serial interface		Shift register (SIO)		Held	Undefined
		Operation mode register (CSIM)		0	0
		SBI control register (SBIC)		0	0
		Slave address register (SVA)		Held	Undefined
Clock generator, clock output circuit		Processor clock control register (PCC)		0	0
		Clock output mode register (CLOM)		0	0

Table 9-1. Status of Each Hardware After Reset (2/2)

Hardware		$\overline{\text { RESET }}$ signal generation in the standby mode	$\overline{\text { RESET }}$ signal generation in operation
Interrupt function	Interrupt request flag (IRQ×××)	Reset (0)	Reset (0)
	Interrupt enable flag (IE $\times \times \times$)	0	0
	Interrupt priority select register (IPS)	0	0
	INT0, 1, 2 mode registers (IM0, IM1, IM2)	0, 0, 0	0, 0, 0
Digital port	Output buffer	Off	Off
	Output latch	Cleared (0)	Cleared (0)
	I/O mode registers (PMGA, B, C)	0	0
	Pull-up resistor setting registers (POGA, B)	0	0
Bit sequential buffers (BSB0-BSB3)		Held	Undefined

^ 10. MASK OPTION

The μ PD754304 has the following mask options:

- Mask option of P50 through P53

Pull-up resistors can be connected to these pins.
(1) Specify connection of a pull-up resistor in 1-bit units.
(2) Do not specify connection of a pull-up resistor.

- Standby function mask option

The wait time when the $\overline{\operatorname{RESET}}$ signal is input can be selected.
(1) $2^{17} / \mathrm{fx}(21.8 \mathrm{~ms}: ~ f x=6.0 \mathrm{MHz}, 31.3 \mathrm{~ms}: f \mathrm{f}=4.19 \mathrm{MHz})$
(2) $2^{15} / \mathrm{fx}(5.46 \mathrm{~ms}: f \mathrm{x}=6.0 \mathrm{MHz}, 7.81 \mathrm{~ms}: \mathrm{fx}=4.19 \mathrm{MHz})$

11. INSTRUCTION SETS

(1) Expression formats and description methods of operands

The operand is described in the operand column of each instruction in accordance with the description method for the operand expression format of the instruction. For details, refer to RA75X ASSEMBLER PACKAGE USERS' MANUAL——_LANGUAGE (EEU-1363). If there are several elements, one of them is selected. Capital letters and the + and - symbols are key words and are described as they are. For immediate data, appropriate numbers and labels are described.
Instead of the labels such as mem, fmem, pmem, and bit, the symbols of the register flags can be described. However, there are restrictions in the labels that can be described for fmem and pmem. For details, refer to the μ PD754304 USER'S MANUAL (U10123E).

Representation format	Description method
reg reg1	$\begin{aligned} & X, A, B, C, D, E, H, L \\ & X, B, C, D, E, H, L \end{aligned}$
rp rp1 rp2 rp' rp'1	```XA, BC, DE, HL BC, DE, HL BC, DE XA, BC, DE, HL, XA', BC', DE', HL' BC, DE, HL, XA', BC', DE', HL'```
rpa rpa1	$\begin{aligned} & \mathrm{HL}, \mathrm{HL}+, \mathrm{HL}-, \mathrm{DE}, \mathrm{DL} \\ & \mathrm{DE}, \mathrm{DL} \end{aligned}$
$\begin{aligned} & \text { n4 } \\ & \text { n8 } \end{aligned}$	4-bit immediate data or label 8-bit immediate data or label
mem bit	8-bit immediate data or label Note 2-bit immediate data or label
fmem pmem	FBOH-FBFH, FFOH-FFFH immediate data or label FCOH-FFFH immediate data or label
addr addr1 caddr faddr	0000H-07FFH immediate data or label (μ PD754302) $0000 \mathrm{H}-0 \mathrm{FFFH}$ immediate data or label (μ PD754304) $0000 \mathrm{H}-07 \mathrm{FFH}$ immediate data or label ($\mu \mathrm{PD} 754302$) 0000H-0FFFH immediate data or label (μ PD754304) 12-bit immediate data or label 11-bit immediate data or label
taddr	20H-7FH immediate data (where bit $0=0$) or label
PORTn IExxx RBn MBn	PORT0-PORT3, PORT5-PORT8 IEBT, IET0, IET1, IE0-IE2, IE4, IECSI RB0-RB3 MB0, MB15

Note mem can be only used for even address in 8-bit data processing.
(2) Legend in explanation of operation

A	A register; 4-bit accumulator
B	: B register
C	: C register
D	: D register
E	: E register
H	: H register
L	: L register
X	: X register
XA	: XA register pair; 8-bit accumulator
BC	: BC register pair
DE	: DE register pair
HL	: HL register pair
XA'	: XA' expanded register pair
BC'	: BC' expanded register pair
DE'	: DE' expanded register pair
HL'	: HL' expanded register pair
PC	: Program counter
SP	: Stack pointer
CY	: Carry flag; bit accumulator
PSW	: Program status word
MBE	: Memory bank enable flag
RBE	: Register bank enable flag
PORTn	: Port n ($\mathrm{n}=0-3,5-8$)
IME	: Interrupt master enable flag
IPS	: Interrupt priority select register
IExxx	: Interrupt enable flag
RBS	: Register bank select register
MBS	: Memory bank select register
PCC	: Processor clock control register
-	: Separation between address and bit
($\times \times$)	: The contents addressed by $\times \times$
$x \times H$: Hexadecimal data

(3) Explanation of symbols under addressing area column

*1	$\begin{aligned} & M B=M B E \cdot M B S \\ & (M B S=0,15) \end{aligned}$		\uparrow
*2	$\mathrm{MB}=0$		
*3	$\begin{aligned} \mathrm{MBE}=0: M B & =0(000 \mathrm{H}-07 \mathrm{FH}) \\ \mathrm{MB} & =15(\mathrm{~F} 80 \mathrm{H}-\mathrm{FFFH}) \\ \mathrm{MBE}=1: \mathrm{MB} & =\mathrm{MBS}(\mathrm{MBS}=0,15) \end{aligned}$		Data memory addressing
*4	$\mathrm{MB}=15, \mathrm{fmem}=\mathrm{FBOH}-\mathrm{FBFH}, \mathrm{FFOH}-\mathrm{FFFH}$		
*5	$\mathrm{MB}=15, \mathrm{pmem}=\mathrm{FCOH}-\mathrm{FFFH}$		\downarrow
*6	μ PD754302	addr $=0000 \mathrm{H}-07 \mathrm{FFH}$	
	μ PD754304	addr $=0000 \mathrm{H}-0 \mathrm{FFFH}$	Program memory addressing
*7	$\begin{aligned} \text { addr }= & (\text { Current PC) }-15 \text { to (Current PC) }-1 \\ & (\text { Current PC) }+2 \text { to (Current PC) }+16 \end{aligned}$		
	$\begin{aligned} \text { addr1 }= & (\text { Current PC) }-15 \text { to (Current PC) }-1 \\ & (\text { Current PC) }+2 \text { to (Current PC) }+16 \end{aligned}$		
*8	μ PD754302	caddr $=0000 \mathrm{H}-07 \mathrm{FFH}$	
	μ PD754304	caddr $=0000 \mathrm{H}-0 \mathrm{FFFH}\left(\mathrm{PC}_{12}=0\right)$	
*9	faddr $=0000 \mathrm{H}-07 \mathrm{FFH}$		
*10	taddr $=0020 \mathrm{H}-007 \mathrm{FH}$		
${ }^{*} 11$	μ PD754302	addr1 $=0000 \mathrm{H}-07 \mathrm{FFH}$	
	μ PD754304	addr1 $=0000 \mathrm{H}-0 \mathrm{FFFH}$	

Remarks 1. MB indicates memory bank that can be accessed.
2. In *2, MB $=0$ independently of how MBE and MBS are set.
3. In *4 and *5, MB $=15$ independently of how MBE and MBS are set.
4. *6 to *11 indicate the areas that can be addressed.
(4) Explanation of number of machine cycles column
S denotes the number of machine cycles required by skip operation when a skip instruction is executed. The value of S varies as follows.

- When no skip is made: $S=0$
- When the skipped instruction is a 1 - or 2-byte instruction: $S=1$
- When the skipped instruction is a 3-byte instruction Note: $S=2$

Note 3-byte instruction: BR !addr, BRA !addr1, CALL !addr or CALLA !addr1 instruction

Caution The GETI instruction is skipped in one machine cycle.

One machine cycle is equal to one cycle of CPU clock (= tcy); time can be selected from among four types by setting PCC.

Instruction group	Mnemonic	Operand	Number of bytes	Number of machine cycles	Operation	Addressing area	Skip condition
Transfer	MOV	A, \#n4	1	1	$\mathrm{A} \leftarrow \mathrm{n} 4$		String effect A
		reg1, \#n4	2	2	$\mathrm{reg} 1 \leftarrow \mathrm{n} 4$		
		XA, \#n8	2	2	$\mathrm{XA} \leftarrow \mathrm{n} 8$		String effect A
		HL, \#n8	2	2	$\mathrm{HL} \leftarrow \mathrm{n} 8$		String effect B
		rp2, \#n8	2	2	$\mathrm{rp} 2 \leftarrow \mathrm{n} 8$		
		A, @HL	1	1	$\mathrm{A} \leftarrow(\mathrm{HL})$	*1	
		A, @HL+	1	$2+$ S	$\mathrm{A} \leftarrow(\mathrm{HL})$, then $\mathrm{L} \leftarrow \mathrm{L}+1$	*1	$\mathrm{L}=0$
		A, @HL-	1	2+S	$\mathrm{A} \leftarrow(\mathrm{HL})$, then $\mathrm{L} \leftarrow \mathrm{L}-1$	*1	$\mathrm{L}=\mathrm{FH}$
		A, @rpa	1	1	$\mathrm{A} \leftarrow(\mathrm{rpa})$	*2	
		XA, @HL	2	2	$\mathrm{XA} \leftarrow(\mathrm{HL})$	*1	
		@HL, A	1	1	$(\mathrm{HL}) \leftarrow \mathrm{A}$	*1	
		@HL, XA	2	2	$(\mathrm{HL}) \leftarrow \mathrm{XA}$	*1	
		A, mem	2	2	$\mathrm{A} \leftarrow(\mathrm{mem})$	*3	
		XA, mem	2	2	$\mathrm{XA} \leftarrow(\mathrm{mem})$	*3	
		mem, A	2	2	$($ mem $) \leftarrow \mathrm{A}$	*3	
		mem, XA	2	2	$($ mem $) \leftarrow \mathrm{XA}$	*3	
		A, reg1	2	2	$\mathrm{A} \leftarrow \mathrm{reg} 1$		
		XA, rp'	2	2	$X A \leftarrow r p^{\prime}$		
		reg1, A	2	2	reg1 $\leftarrow \mathrm{A}$		
		rp'1, XA	2	2	rp '1 $\leftarrow \mathrm{XA}$		
	XCH	A, @HL	1	1	$A \leftrightarrow(H L)$	*1	
		A, @HL+	1	$2+S$	$\mathrm{A} \leftrightarrow(\mathrm{HL})$, then $\mathrm{L} \leftarrow \mathrm{L}+1$	*1	$\mathrm{L}=0$
		A, @HL-	1	$2+S$	$\mathrm{A} \leftrightarrow(\mathrm{HL})$, then $\mathrm{L} \leftarrow \mathrm{L}-1$	*1	$\mathrm{L}=\mathrm{FH}$
		A, @rpa	1	1	$\mathrm{A} \leftrightarrow(\mathrm{rpa})$	*2	
		XA, @HL	2	2	$\mathrm{XA} \leftrightarrow(\mathrm{HL})$	*1	
		A, mem	2	2	$\mathrm{A} \leftrightarrow$ (mem)	*3	
		XA, mem	2	2	XA \leftrightarrow (mem)	*3	
		A, reg1	1	1	$\mathrm{A} \leftrightarrow \mathrm{reg} 1$		
		XA, rp'	2	2	$X A \leftrightarrow r p^{\prime}$		
Table reference	MOVT	XA, @PCDE	1	3	$\begin{aligned} & \bullet \mu \text { PD }^{2} 54302 \\ & \mathrm{XA} \leftarrow\left(\mathrm{PC}_{10-8}+\mathrm{DE}\right)_{\text {Roм }} \end{aligned}$		
					$\begin{aligned} & \bullet \mu \text { PD754304 } \\ & \text { XA } \leftarrow\left(\mathrm{PC}_{11-8}+\mathrm{DE}\right)_{\text {Roм }} \end{aligned}$		
		XA, @PCXA	1	3	- μ PD754302 $X A \leftarrow\left(\mathrm{PC}_{10-8}+\mathrm{XA}\right)_{\text {вом }}$ - μ PD754304 $X A \leftarrow\left(\mathrm{PC}_{11-8}+\mathrm{XA}\right)_{\text {вом }}$		
		XA, @BCDE	1	3	$X A \leftarrow(B C D E)_{\text {rom }}$ Note	*6	
		XA, @BCXA	1	3	XA $\leftarrow(\mathrm{BCXA})_{\text {Rom }}{ }^{\text {Note }}$	*6	

Note To use the μ PD754302, clear the most significant bit of the register C and register B to " 0 ". To use the μ PD754304, clear the register B to " 0 ".

Instruction group	Mnemonic	Operand	Number of bytes	Number of machine cycles	Operation	Addressing area	Skip condition
Bit transfer	MOV1	CY, fmem.bit	2	2	$\mathrm{CY} \leftarrow$ (fmem.bit)	*4	
		CY, pmem.@L	2	2	$\mathrm{CY} \leftarrow\left(\right.$ pmem $_{\left.7-2+\mathrm{L}_{3-2} . \mathrm{bit}\left(\mathrm{L}_{1-0}\right)\right)}$	*5	
		CY, @H+mem.bit	2	2	$\mathrm{CY} \leftarrow\left(\mathrm{H}+\mathrm{mem}_{3-0 . \mathrm{bit})}\right.$	*1	
		fmem.bit, CY	2	2	(fmem.bit) $\leftarrow C Y$	*4	
		pmem.@L, CY	2	2	$\left(\right.$ pmem $\left.\left._{7-2+L_{3-2} .} \operatorname{bit}^{(} \mathrm{L}_{1-0}\right)\right) \leftarrow \mathrm{CY}$	*5	
		@H+mem.bit, CY	2	2	$\left(\mathrm{H}+\mathrm{mem}_{3-0 . \mathrm{bit})} \leftarrow \mathrm{CY}\right.$	*1	
Operation	ADDS	A, \#n4	1	1+S	$\mathrm{A} \leftarrow \mathrm{A}+\mathrm{n} 4$		carry
		XA, \#n8	2	$2+$ S	$\mathrm{XA} \leftarrow \mathrm{XA}+\mathrm{n} 8$		carry
		A, @HL	1	1+S	$\mathrm{A} \leftarrow \mathrm{A}+(\mathrm{HL})$	*1	carry
		XA, rp'	2	$2+S$	$X A \leftarrow X A+r p^{\prime}$		carry
		rp'1, XA	2	$2+$ S	rp '1 $\leftarrow \mathrm{rp}$ ' $1+\mathrm{XA}$		carry
	ADDC	A, @HL	1	1	$\mathrm{A}, \mathrm{CY} \leftarrow \mathrm{A}+(\mathrm{HL})+\mathrm{CY}$	*1	
		XA, rp'	2	2	$X A, C Y \leftarrow X A+r p^{\prime}+C Y$		
		rp'1, XA	2	2	rp' $1, \mathrm{CY} \leftarrow \mathrm{rp}$ '1+XA +CY		
	SUBS	A, @HL	1	1+S	$\mathrm{A} \leftarrow \mathrm{A}-(\mathrm{HL})$	*1	borrow
		XA, rp'	2	$2+$ S	$X A \leftarrow X A-r p^{\prime}$		borrow
		rp'1, XA	2	$2+$ S	rp '1 $\leftarrow \mathrm{rp}{ }^{\prime} 1-\mathrm{XA}$		borrow
	SUBC	A, @HL	1	1	$\mathrm{A}, \mathrm{CY} \leftarrow \mathrm{A}-(\mathrm{HL})-\mathrm{CY}$	*1	
		XA, rp'	2	2	$X A, C Y \leftarrow X A-r p^{\prime}-C Y$		
		rp'1, XA	2	2	rp'1, CY $\leftarrow \mathrm{rp}$ '1-XA-CY		
	AND	A, \#n4	2	2	$A \leftarrow A \wedge n 4$		
		A, @HL	1	1	$A \leftarrow A \wedge(H L)$	*1	
		XA, rp'	2	2	$X A \leftarrow X A \wedge r p^{\prime}$		
		rp'1, XA	2	2	rp '1 $\leftarrow \mathrm{rp}$ '1 $\wedge \mathrm{XA}$		
	OR	A, \#n4	2	2	$A \leftarrow A \vee n 4$		
		A, @HL	1	1	$\mathrm{A} \leftarrow \mathrm{A} \vee(\mathrm{HL})$	*1	
		XA, rp'	2	2	$X A \leftarrow X A \vee r p^{\prime}$		
		rp'1, XA	2	2	rp '1 $\leftarrow \mathrm{rp}$ '1 $\vee \mathrm{XA}$		
	XOR	A, \#n4	2	2	$A \leftarrow A \forall n 4$		
		A, @HL	1	1	$A \leftarrow A \forall(H L)$	*1	
		XA, rp'	2	2	$X A \leftarrow X A \forall r p^{\prime}$		
		rp'1, XA	2	2	rp '1 $\leftarrow \mathrm{rp}$ '1 $\forall \mathrm{XA}$		
Accumulator manipulation	RORC	A	1	1	$\mathrm{CY} \leftarrow \mathrm{A}_{0}, \mathrm{~A}_{3} \leftarrow \mathrm{CY}, \mathrm{A}_{n-1} \leftarrow \mathrm{~A}_{n}$		
	NOT	A	2	2	$\mathrm{A} \leftarrow \overline{\mathrm{A}}$		
Increment and decrement	INCS	reg	1	1+S	$\mathrm{reg} \leftarrow \mathrm{reg}+1$		$\mathrm{reg}=0$
		rp1	1	1+S	$\mathrm{rp} 1 \leftarrow \mathrm{rp} 1+1$		$\mathrm{rp} 1=00 \mathrm{H}$
		@HL	2	2+S	$(\mathrm{HL}) \leftarrow(\mathrm{HL})+1$	*1	$(\mathrm{HL})=0$
		mem	2	2+S	$($ mem $) \leftarrow($ mem $)+1$	*3	$(\mathrm{mem})=0$
	DECS	reg	1	1+S	$\mathrm{reg} \leftarrow \mathrm{reg}-1$		$\mathrm{reg}=\mathrm{FH}$
		rp'	2	2+S	rp ' $\leftarrow \mathrm{rp}^{\prime}-1$		rp'=FFH

Instruction group	Mnemonic	Operand	Number of bytes	Number of machine cycles	Operation	Addressing area	Skip condition
Comparison	SKE	reg, \#n4	2	2+S	Skip if reg $=\mathrm{n} 4$		reg=n4
		@HL, \#n4	2	2+S	Skip if (HL) $=\mathrm{n} 4$	*1	$(\mathrm{HL})=\mathrm{n} 4$
		A, @HL	1	1+S	Skip if $A=(H L)$	*1	$\mathrm{A}=(\mathrm{HL})$
		XA, @HL	2	2+S	Skip if $\mathrm{XA}=(\mathrm{HL})$	*1	$X A=(H L)$
		A, reg	2	2+S	Skip if $A=r e g$		A=reg
		XA, rp'	2	$2+$ S	Skip if $X A=r p^{\prime}$		$X A=r p^{\prime}$
Carry flag manipulation	SET1	CY	1	1	$\mathrm{CY} \leftarrow 1$		
	CLR1	CY	1	1	$\mathrm{CY} \leftarrow 0$		
	SKT	CY	1	1+S	Skip if $C Y=1$		$C Y=1$
	NOT1	CY	1	1	$\mathrm{CY} \leftarrow \overline{\mathrm{CY}}$		
Memory bit manipulation	SET1	mem.bit	2	2	(mem.bit) $\leftarrow 1$	*3	
		fmem.bit	2	2	(fmem. bit) $\leftarrow 1$	*4	
		pmem.@L	2	2	$\left(\right.$ pmem $\left._{7-2+L_{3-2}}{ }^{\text {bit }}\left(\mathrm{L}_{1-0}\right)\right) \leftarrow 1$	*5	
		@H+mem.bit	2	2	$\left(\mathrm{H}+\right.$ mem $_{3-0}$. bit$) \leftarrow 1$	*1	
	CLR1	mem.bit	2	2	(mem.bit) $\leftarrow 0$	*3	
		fmem.bit	2	2	(fmem. bit) $\leftarrow 0$	*4	
		pmem.@L	2	2		*5	
		@H+mem.bit	2	2	$\left(\mathrm{H}+\right.$ mem $_{3-0 . \text { bit }}$) $\leftarrow 0$	*1	
	SKT	mem.bit	2	$2+$ S	Skip if (mem.bit) $=1$	*3	(mem.bit)=1
		fmem.bit	2	$2+$ S	Skip if (fmem.bit) $=1$	*4	$($ fmem. bit $)=1$
		pmem.@L	2	2+S		*5	(pmem.@L)=1
		@H+mem.bit	2	2+S	Skip if ($\mathrm{H}+\mathrm{mem}_{3-0.0}$ bit $)=1$	*1	$(@ H+m e m . b i t)=1$
	SKF	mem.bit	2	$2+$ S	Skip if (mem. bit) $=0$	*3	$($ mem.bit) $=0$
		fmem.bit	2	$2+$ S	Skip if (fmem. bit) $=0$	*4	$($ fmem.bit) $=0$
		pmem.@L	2	2+S	Skip if (pmem7-2+ L_{3}-2.bit $\left(\mathrm{L}_{1-0}\right)$) $=0$	*5	(pmem.@L)=0
		@H+mem.bit	2	2+S	Skip if ($\mathrm{H}+\mathrm{mem}_{3-0.0 \mathrm{bit})=0}$	*1	$(@ H+$ mem.bit) $=0$
	SKTCLR	fmem.bit	2	$2+$ S	Skip if (fmem.bit) $=1$ and clear	*4	$($ fmem bit$)=1$
		pmem.@L	2	$2+$ S		*5	(pmem.@L)=1
		@H+mem.bit	2	2+S	Skip if ($\mathrm{H}+$ mem $_{3-0}$. bit $)=1$ and clear	*1	$(@ H+m e m . b i t)=1$
	AND1	CY, fmem.bit	2	2	$\mathrm{CY} \leftarrow \mathrm{CY} \wedge$ (fmem.bit)	*4	
		CY, pmem.@L	2	2	$\mathrm{CY} \leftarrow \mathrm{CY} \wedge\left(\right.$ pmem $_{\left.7-2+\mathrm{L}_{3}-2 . \mathrm{bit}\left(\mathrm{L}_{1-0}\right)\right)}$	*5	
		CY, @H+mem.bit	2	2	$\mathrm{CY} \leftarrow \mathrm{CY} \wedge\left(\mathrm{H}+\right.$ mem $_{3-0}$. bit $)$	*1	
	OR1	CY, fmem. bit	2	2	$\mathrm{CY} \leftarrow \mathrm{CY} \vee$ (fmem.bit)	*4	
		CY, pmem.@L	2	2	$\mathrm{CY} \leftarrow \mathrm{CY} \vee\left(\right.$ pmem $_{\left.7-2+\mathrm{L}_{3}-2 . \mathrm{bit}\left(\mathrm{L}_{1-0}\right)\right)}$	*5	
		CY, @H+mem.bit	2	2	$\mathrm{CY} \leftarrow \mathrm{CY} \vee\left(\mathrm{H}+\right.$ mem $_{3}$-0. bit$)$	*1	
	XOR1	CY, fmem.bit	2	2	$C Y \leftarrow C Y \forall$ (fmem.bit)	*4	
		CY, pmem.@L	2	2	$\mathrm{CY} \leftarrow \mathrm{CY} \forall\left(\right.$ pmem $_{\left.7-2+\mathrm{L}_{3-2} . \mathrm{bit}\left(\mathrm{L}_{1-0}\right)\right)}$	*5	
		CY, @H+mem.bit	2	2	$\mathrm{CY} \leftarrow \mathrm{CY} \forall\left(\mathrm{H}+\mathrm{mem}_{3-0 . \mathrm{bit})}\right.$	*1	

Instruction group	Mnemonic	Operand	Number of bytes	Number of machine cycles	Operation	Addressing area	Skip condition
Branch	BR Note	addr	-	-	- μ PD754302 $\mathrm{PC}_{10-0} \leftarrow$ addr $\left(\begin{array}{l}\text { Select appropriate instruction from } \\ \text { among BR !addr, BRCB !caddr and BR } \\ \text { \$addr according to the assembler being } \\ \text { used. }\end{array}\right)$ - μ PD754304 $\mathrm{PC}_{11-0} \leftarrow$ addr $\left(\begin{array}{l}\text { Select appropriate instruction from } \\ \text { among BR !addr, BRCB !caddr and BR } \\ \text { \$addr according to the assembler being } \\ \text { used. }\end{array}\right)$	*6	
		addr1	-	-	- μ PD754302 $\mathrm{PC}_{10.0} \leftarrow$ addr $\left(\begin{array}{l}\text { Select appropriate instruction from } \\ \text { among BR !addr, BRA !addr1, BRCB } \\ \text { !caddr and BR \$addr1 according to the } \\ \text { assembler being used. }\end{array}\right)$ - μ PD754304 $\mathrm{PC}_{11-0} \leftarrow$ addr1 $\left(\begin{array}{l}\text { Select appropriate instruction from } \\ \text { among BR !addr, BRA !addr1, BRCB } \\ \text { !caddr and BR \$addr1 according to the } \\ \text { assembler being used. }\end{array}\right)$	*11	
		!addr	3	3	- μ PD754302 $\mathrm{PC}_{10-0} \leftarrow$ addr - μ PD754304 $\mathrm{PC}_{11-0} \leftarrow$ addr	*6	
		\$addr	1	2	$\begin{array}{\|l} \text { • } \mu \mathrm{PD}^{2} 754302 \\ \mathrm{PC}_{10-0} \leftarrow \text { addr } \\ \hline \text { • } \mu \mathrm{PD}_{154304} \\ \mathrm{PC}_{11-0} \leftarrow \text { addr } \end{array}$	*7	
		\$addr1	1	2	$\begin{aligned} & \hline \text { - } \mu \text { PD754302 } \\ & \text { PC }_{10-0} \leftarrow \text { addr1 } \\ & \hline-\mu \text { PD754304 } \\ & \text { PC }_{11-0} \leftarrow \text { addr1 }^{2} \end{aligned}$		
		PCDE	2	3	$\begin{array}{\|l} \bullet \mu \mathrm{PD}_{2} 4302 \\ \mathrm{PC}_{10-0} \leftarrow \mathrm{PC}_{10-8}+\mathrm{DE} \\ \hline \text { - } \mu \mathrm{PD}^{2} 754304 \\ \mathrm{PC}_{11-0} \leftarrow \mathrm{PC}_{11-8+\mathrm{DE}} \end{array}$		
		PCXA	2	3	$\begin{array}{\|l} \text { - } \mu \mathrm{PD}_{2} 74302 \\ \mathrm{PC}_{10-0} \leftarrow \mathrm{PC}_{10-8+} \mathrm{XA} \\ \hline \text { - } \mu \mathrm{PD}^{2} 754304 \\ \mathrm{PC}_{11-0} \leftarrow \mathrm{PC}_{11-8+} \mathrm{XA} \end{array}$		

Note The above operations in the double boxes can be performed only in the Mk II mode.

Instruction group	Mnemonic	Operand	Number of bytes	Number of machine cycles	Operation	Addressing area	Skip condition
Branch	BR	BCDE	2	3	- μ PD754302 $\mathrm{PC}_{10-0} \leftarrow \mathrm{BCDE}$ Note1 - μ PD754304 $\mathrm{PC}_{11-0} \leftarrow \mathrm{BCDE}$ Note2	*6	
		BCXA	2	3	- μ PD754302 $\mathrm{PC}_{10-0} \leftarrow \mathrm{BCXA}$ Note1 - μ PD754304 $\mathrm{PC}_{11-0} \leftarrow \mathrm{BCXA}{ }^{\text {Note2 }}$	*6	
	BRA Note3	!addr1	3	3	$\bullet \mu$ PD754302 $\mathrm{PC}_{10-0} \leftarrow$ addr1 - $\mu \mathrm{PDD754304}$ $\mathrm{PC}_{11-0} \leftarrow$ addr1	*11	
	BRCB	!caddr	2	2	- μ PD754302 $\mathrm{PC}_{10-0} \leftarrow$ caddr $_{10-0}$ - μ PD754304 $\mathrm{PC}_{11-0} \leftarrow$ caddr $_{11-0}$	*8	
Subroutine stack control	CALLA ${ }^{\text {Note3 }}$!addr1	3	3	- μ PD754302 (SP-2) $\leftarrow \times, \times$, MBE, RBE $(S P-6)(S P-3)(S P-4) \leftarrow \mathrm{PC}_{10-0}$ $(S P-5) \leftarrow 0,0,0,0$ $\mathrm{PC}_{10-0} \leftarrow$ addr1, $\mathrm{SP} \leftarrow \mathrm{SP}-6$ - μ PD754304 (SP-2) $\leftarrow \times, \times$, MBE, RBE $(S P-6)(S P-3)(S P-4) \leftarrow$ PC $_{11-0}$ $(\mathrm{SP}-5) \leftarrow 0,0,0,0$ $\mathrm{PC}_{11-0} \leftarrow$ addr1, $\mathrm{SP} \leftarrow \mathrm{SP}-6$	*11	
	CALL Note3	!addr	3	4	- μ PD754302 $(\mathrm{SP}-3) \leftarrow \mathrm{MBE}, \mathrm{RBE}, 0,0$ $(S P-4)(S P-1)(S P-2) \leftarrow \mathrm{PC}_{10-0}$ $\mathrm{PC}_{10-0} \leftarrow$ addr, $\mathrm{SP} \leftarrow \mathrm{SP}-4$ - μ PD754304 $(\mathrm{SP}-3) \leftarrow \mathrm{MBE}, \mathrm{RBE}, 0,0$ $(S P-4)(S P-1)(S P-2) \leftarrow P_{11-0}$ $\mathrm{PC}_{11-0} \leftarrow \mathrm{addr}, \mathrm{SP} \leftarrow \mathrm{SP}-4$ - μ PD754302 (SP-2) $\leftarrow \times, \times$, MBE, RBE $(S P-6)(S P-3)(S P-4) \leftarrow$ PC $_{10-0}$ $(S P-5) \leftarrow 0,0,0,0$ $\mathrm{PC}_{10-0} \leftarrow$ addr, $\mathrm{SP} \leftarrow \mathrm{SP}-6$ - μ PD754304 (SP-2) $\leftarrow \times, \times$, MBE, RBE (SP-6) $(\mathrm{SP}-3)(\mathrm{SP}-4) \leftarrow \mathrm{PC}_{11-0}$ $(S P-5) \leftarrow 0,0,0,0$ $\mathrm{PC}_{11-0} \leftarrow$ addr, $\mathrm{SP} \leftarrow \mathrm{SP}-6$	*6	

Notes 1. " 0 " must be set to the most significant bit of the register C and register B.
2. " 0 " must be set to register B.
3. The above operations in the double boxes can be performed only in the Mk II mode. The other operations can be performed only in the MkI mode.

Instruction group	Mnemonic	Operand	Number of bytes	Number of machine cycles	Operation	Addressing area	Skip condition
Subroutine stack control	CALLF Note	!faddr	2	2	$\begin{aligned} & \bullet \mu \mathrm{PD} 754302 \\ & (\mathrm{SP}-3) \leftarrow \mathrm{MBE}, \mathrm{RBE}, 0,0 \\ & (\mathrm{SP}-4)(\mathrm{SP}-1)(\mathrm{SP}-2) \leftarrow \mathrm{PC}_{10-0} \\ & \mathrm{PC}_{10-0} \leftarrow \text { faddr, } \mathrm{SP} \leftarrow \mathrm{SP}-4 \\ & \hline \bullet \mu \mathrm{PD}^{2} 54304 \\ & (\mathrm{SP}-3) \leftarrow \mathrm{MBE}, \mathrm{RBE}, 0,0 \\ & (\mathrm{SP}-4)(\mathrm{SP}-1)(\mathrm{SP}-2) \leftarrow \mathrm{PC}_{11-0} \\ & \mathrm{PC}_{11-0} \leftarrow 0+\mathrm{faddr}, \mathrm{SP} \leftarrow \mathrm{SP}-4 \\ & \hline \hline \bullet \mu \mathrm{PD} 754302 \\ & (\mathrm{SP}-2) \leftarrow \times, \times, \mathrm{MBE}, \mathrm{RBE} \\ & (\mathrm{SP}-6)(\mathrm{SP}-3)(\mathrm{SP}-4) \leftarrow \mathrm{PC}_{10-0} \\ & (\mathrm{SP}-5) \leftarrow 0,0,0,0 \\ & \mathrm{PC} \\ & \hline 10-0 \leftarrow \text { faddr, } \mathrm{SP} \leftarrow \mathrm{SP}-6 \\ & \bullet \mu \mathrm{PD} 754304 \\ & (\mathrm{SP}-2) \leftarrow \times, \times, \mathrm{MBE}, \mathrm{RBE} \\ & (\mathrm{SP}-6)(\mathrm{SP}-3)(\mathrm{SP}-4) \leftarrow \mathrm{PC}_{11-0} \\ & (\mathrm{SP}-5) \leftarrow 0,0,0,0 \\ & \mathrm{PC} \\ & 11-0 \end{aligned} \leftarrow 0+\mathrm{faddr}, \mathrm{SP} \leftarrow \mathrm{SP}-6$	*9	
	RET Note		1	3	- μ PD754302 $\mathrm{PC}_{10-0} \leftarrow(\mathrm{SP})(\mathrm{SP}+3)(\mathrm{SP}+2)$ MBE, RBE, $0,0 \leftarrow(S P+1), S P \leftarrow S P+4$ - μ PD754304 $\mathrm{PC}_{11-0} \leftarrow(\mathrm{SP})(\mathrm{SP}+3)(\mathrm{SP}+2)$ MBE, RBE, $0,0 \leftarrow(\mathrm{SP}+1), \mathrm{SP} \leftarrow \mathrm{SP}+4$		
	RETS Note		1	$3+$ S	- μ PD754302 MBE, RBE, $0,0 \leftarrow(\mathrm{SP}+1)$ $\mathrm{PC}_{10-0} \leftarrow(\mathrm{SP})(\mathrm{SP}+3)(\mathrm{SP}+2)$ $\mathrm{SP} \leftarrow \mathrm{SP}+4$ then skip unconditionally - μ PD754304 MBE, RBE, $0,0 \leftarrow(\mathrm{SP}+1)$ $\mathrm{PC}_{11-0} \leftarrow(\mathrm{SP})(\mathrm{SP}+3)(\mathrm{SP}+2)$ $\mathrm{SP} \leftarrow \mathrm{SP}+4$ then skip unconditionally		Unconditional

Note The above operations in the double boxes can be performed only in the Mk II mode. The other operations can be performed only in the Mk I mode.

Instruction group	Mnemonic	Operand	Number of bytes	Number of machine cycles	Operation	Addressing area	Skip condition
Subroutine stack control	RETS Note1		1	$3+$ S	- $\mu \mathrm{PD} 754302$ $0,0,0,0 \leftarrow(\mathrm{SP}+1)$ $\mathrm{PC}_{10-0} \leftarrow(\mathrm{SP})(\mathrm{SP}+3)(\mathrm{SP}+2)$ $\times, \times, \mathrm{MBE}, \mathrm{RBE} \leftarrow(\mathrm{SP}+4)$ $\mathrm{SP} \leftarrow \mathrm{SP}+6$ then skip unconditionally - $\mu \mathrm{PD} 754304$ $0,0,0,0 \leftarrow(\mathrm{SP}+1)$ PC $\times, \times, \mathrm{MBE}, \mathrm{RBE} \leftarrow(\mathrm{SP})(\mathrm{SP}+3)(\mathrm{SP}+2)$ $\mathrm{SP} \leftarrow \mathrm{SP}+6$ then skip unconditionally		Unconditional
	RETI Note 1		1	3	$\begin{aligned} & \bullet \mu \mathrm{PD} 754302 \\ & \mathrm{MBE}, \mathrm{RBE}, 0,0 \leftarrow(\mathrm{SP}+1) \\ & \mathrm{PC}_{10-0} \leftarrow(\mathrm{SP})(\mathrm{SP}+3)(\mathrm{SP}+2) \\ & \mathrm{PSW} \leftarrow(\mathrm{SP}+4)(\mathrm{SP}+5), \mathrm{SP} \leftarrow \mathrm{SP}+6 \\ & \hline \bullet \mu \mathrm{PD} 754304 \\ & \mathrm{MBE}, \mathrm{RBE}, 0,0 \leftarrow(\mathrm{SP}+1) \\ & \mathrm{PC}_{11-0} \leftarrow(\mathrm{SP})(\mathrm{SP}+3)(\mathrm{SP}+2) \\ & \mathrm{PSW} \leftarrow(\mathrm{SP}+4)(\mathrm{SP}+5), \mathrm{SP} \leftarrow \mathrm{SP}+6 \\ & \hline \bullet \mu \mathrm{PD} 754302 \\ & 0,0,0,0 \leftarrow(\mathrm{SP}+1) \\ & \mathrm{PC} 10-0 \leftarrow(\mathrm{SP})(\mathrm{SP}+3)(\mathrm{SP}+2) \\ & \mathrm{PSW} \leftarrow(\mathrm{SP}+4)(\mathrm{SP}+5), \mathrm{SP} \leftarrow \mathrm{SP}+6 \\ & \hline \bullet \mu \mathrm{PD} 754304 \\ & 0,0,0,0 \leftarrow(\mathrm{SP}+1) \\ & \mathrm{PC} \\ & \hline 11-0 \end{aligned} \leftarrow(\mathrm{SP})(\mathrm{SP}+3)(\mathrm{SP}+2) \mathrm{PSW} \leftarrow(\mathrm{SP}+4)(\mathrm{SP}+5), \mathrm{SP} \leftarrow \mathrm{SP}+6$		
	PUSH	rp	1	1	$(\mathrm{SP}-1)(\mathrm{SP}-2) \leftarrow \mathrm{rp}, \mathrm{SP} \leftarrow \mathrm{SP}-2$		
		BS	2	2	$(\mathrm{SP}-1) \leftarrow \mathrm{MBS},(\mathrm{SP}-2) \leftarrow \mathrm{RBS}, \mathrm{SP} \leftarrow \mathrm{SP}-2$		
	POP	rp	1	1	$\mathrm{rp} \leftarrow(\mathrm{SP}+1)(\mathrm{SP}), \mathrm{SP} \leftarrow \mathrm{SP}+2$		
		BS	2	2	$\mathrm{MBS} \leftarrow(\mathrm{SP}+1), \mathrm{RBS} \leftarrow(\mathrm{SP}), \mathrm{SP} \leftarrow \mathrm{SP}+2$		
Interrupt control	El		2	2	IME (IPS.3) $\leftarrow 1$		
		IExxx	2	2	$\mathrm{IE} \times \times \times \leftarrow 1$		
	DI		2	2	IME (IPS.3) $\leftarrow 0$		
		IEXXX	2	2	$\operatorname{IEXXX} \leftarrow 0$		
Input/output	IN Note2	A, PORTn	2	2	$\mathrm{A} \leftarrow$ PORTn $\quad(\mathrm{n}=0-3,5-8)$		
		XA, PORTn	2	2	$\mathrm{XA} \leftarrow \mathrm{PORT}+1$, PORTn $\quad(\mathrm{n}=6)$		
	OUT Note2	PORTn, A	2	2	PORTn $\leftarrow \mathrm{A} \quad(\mathrm{n}=2,3,5-8)$		
		PORTn, XA	2	2	PORT $\mathrm{n}+1$, PORTn \leftarrow ¢A $\quad(\mathrm{n}=6)$		

Notes 1. The above operations in the double boxes can be performed only in the Mk II mode. The other operations can be performed only in the Mk I mode.
2. While the IN instruction and OUT instruction are being executed, the MBE must be set to 0 or 1 and MBS must be set to 15 .

Notes 1. The TBR and TCALL instructions are the table definition assembler directives of the GETI instruction.
2. The above operations in the double boxes can be performed only in the Mk II mode. The other operations can be performed only in the Mk I mode.

Instruction group	Mnemonic	Operand	Number of bytes	Number of machine cycles	Operation	Addressing area	Skip condition
Special	GETI Notes 1, 2	taddr	1	3	- μ PD754304 - When TBR instruction $\mathrm{PC}_{11-0} \leftarrow(\text { taddr })_{3-0}+(\text { taddr }+1)$	*10	
				4	- When TCALL instruction $\begin{aligned} & (\mathrm{SP}-6)(\mathrm{SP}-3)(\mathrm{SP}-4) \leftarrow \mathrm{PC}_{11-0} \\ & (\mathrm{SP}-5) \leftarrow 0,0,0,0 \\ & (\mathrm{SP}-2) \leftarrow \times, \times, \mathrm{MBE}, \mathrm{RBE} \\ & \mathrm{PC}_{11-0} \leftarrow(\text { taddr }){ }_{3-0}+(\text { taddr}+1) \\ & \mathrm{SP} \leftarrow \mathrm{SP}-6 \end{aligned}$		
				3	- When instruction other than TBR and TCALL instructions (taddr) (taddr+1) instruction is executed.		Depending on the reference instruction

Notes 1. The TBR and TCALL instructions are the table definition assembler directives of the GETI instruction.
2. The above operations in the double boxes can be performed only in the Mk II mode.
12. ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

Parameter	Symbol	Test Conditions		Ratings	Unit
Supply voltage	Vdd			-0.3 to +7.0	V
Input voltage	V_{11}	Except port 5		-0.3 to $V_{D D}+0.3$	V
	V_{12}	Port 5	Pull-up resistor incorporated	-0.3 to $V_{\text {dd }}+0.3$	V
			N-ch open-drain	-0.3 to +14	V
Output voltage	Vo			-0.3 to $V_{\text {dD }}+0.3$	V
Output current, high	IOH	Per pin		-10	mA
		For all pins		-30	mA
Output current, low	Iol Note	Per pin		30	mA
		For all pins		220	mA
Operating ambient temperature	TA			-40 to +85	${ }^{\circ} \mathrm{C}$
Storage temperature	$\mathrm{T}_{\text {stg }}$			-65 to +150	${ }^{\circ} \mathrm{C}$

Caution If any of the parameters exceeds the absolute maximum ratings, even momentarily, the quality of the product may be impaired. The absolute maximum ratings are values that may physically damage the products. Be sure to use the products within the ratings.

Capacitance ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=0 \mathrm{~V}$)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Input capacitance	CIn	$\mathrm{f}=1 \mathrm{MHz}$ Unmeasured pins returned to 0 V			15	pF
Output capacitance	Cout				15	pF
I/O capacitance	Cıo				15	pF

System Clock Oscillator Characteristics ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=1.8$ to 5.5 V)

Resonator	Recommended Constant	Parameter	Testing Conditions	MIN.	TYP.	MAX.	Unit
Ceramic resonator		Oscillation frequency (fx) Note1		1.0		$6.0^{\text {Note2 }}$	MHz
		Oscillation stabilization time Note 3	After Vod reaches MIN. value of oscillation voltage range			4	ms
Crystal resonator		Oscillation frequency (fx) Note1		1.0		$6.0^{\text {Note2 }}$	MHz
		Oscillation stabilization time Note3	$V_{\text {DD }}=4.5$ to 5.5 V			10	ms
						30	ms
External clock		X1 input frequency (fx) Note1		1.0		$6.0^{\text {Note2 }}$	MHz
		X 1 input high- and low-level widths (txh, txL)		83.3		500	ns

Notes 1. Only the oscillator characteristics are shown. For the instruction execution time, refer to AC Characteristics.
2. If the oscillation frequency is $4.19 \mathrm{MHz}<\mathrm{fx} \leq 6.0 \mathrm{MHz}$ at $1.8 \mathrm{~V} \leq \mathrm{V} D \mathrm{CD}<2.7 \mathrm{~V}$, set the processor control register (PCC) to a value other than 0011. If the PCC is set to 0011 , the rated cycle time of $0.95 \mu \mathrm{~s}$ is not satisfied.
3. Oscillation stabilization time is a time required for oscillation to stabilize after application of VDD, or after the STOP mode has been released.

Caution When using the oscillation circuit of the main system clock, wire the portion enclosed in dotted lines in the figures as follows to avoid adverse influences on the wiring capacitance:

- Keep the wire length as short as possible.
- Do not cross other signal lines.
- Do not route the wiring in the vicinity of lines though which a high fluctuating current flows.
- Always keep the ground point of the capacitor of the oscillation circuit as the same potential as Vss.
- Do not connect the power source pattern through which a high current flows.
- Do not extract signals from the oscillation circuit.

Recommended Oscillation Circuit Constants

Ceramic Resonator ($\mathrm{T}_{\mathrm{A}}=\mathbf{- 4 0}$ to $+85^{\circ} \mathrm{C}$)

Manufacturer	Product	Frequency(MHz)	Recommended Circuit Constants (pF)		Oscillation Voltage Range (Voo)		Remarks
			C1	C2	MIN.	MAX.	
Murata Mfg. Co., Ltd	CSB1000J Note	1.0	100	100	2.7	5.5	$\mathrm{Rd}=5.6 \mathrm{k} \Omega$
	CSA2.00MG	2.0	30	30	1.8	5.5	
	CST2.00MG		-	-			Capacitor incorporated
	CSA3.58MG	3.58	30	30	1.8	5.5	
	CST3.58MGW		-	-			Capacitor incorporated
	CSA3.58MGU		30	30			
	CST3.58MGWU		-	-			Capacitor incorporated
	CSA4.00MG	4.0	30	30	2.0	5.5	
	CST4.00MGW		-	-			Capacitor incorporated
	CSA4.00MGU		30	30	1.8		
	CST4.00MGWU		-	-			Capacitor incorporated
	CSA6.00MG	6.0	30	30	2.9	5.5	
	CST6.00MGW		-	-			Capacitor incorporated
	CSA6.00MGU		30	30	1.8		
	CST6.00MGWU		-	-			Capacitor incorporated
Kyocera Corp.	KBR-1000F/Y	1.0	100	100	1.8	5.5	$\mathrm{T}_{\mathrm{A}}=-20$ to $+80^{\circ} \mathrm{C}$
	KBR-2.0MS	2.0	47	47	2.0	5.5	
	KBR-4.0MSA	4.0	33	33	1.8	5.5	
	KBR-4.0MKS		-	-			Capacitor incorporated, $\mathrm{T}_{\mathrm{A}}=-20$ to $+80^{\circ} \mathrm{C}$
	PBRC 4.00A		33	33			$\mathrm{T}_{\mathrm{A}}=-20$ to $+80^{\circ} \mathrm{C}$
	PBRC 4.00B		-	-			Capacitor incorporated, $\mathrm{T}_{\mathrm{A}}=-20$ to $+80^{\circ} \mathrm{C}$
	KBR-6.0MSA	6.0	33	33	1.8	5.5	$\mathrm{T}_{\mathrm{A}}=-20$ to $+80^{\circ} \mathrm{C}$
	PBRC 6.00A						
	PBRC 6.00B		-	-			Capacitor incorporated, $\mathrm{T}_{\mathrm{A}}=-20$ to $+80^{\circ} \mathrm{C}$
TDK	CCR1000K2	1.0	100	100	1.8	5.5	
	CCR2.0MC33	2.0	-	-			Capacitor incorporated
	CCR4.19MC3	4.19					
	FCR4.19MC5						
	CCR6.0MC3	6.0					

Note If using Murata's CSB1000J (1.0 MHz) as the ceramic resonator, a limited resistor ($\mathrm{Rd}=5.6 \mathrm{k} \Omega$) is required (see figure below). If using any other recommended resonator, no limited resistor is needed.

Caution The oscillation circuit constants and oscillation voltage range indicate conditions for stable oscillation, but do not guarantee oscillation frequency accuracy. If oscillation frequency accuracy is required for actual circuits, it is necessary to adjust the oscillation frequency of the resonator in the circuit. Please inquire directly to the maker of the resonator for data as needed.

DC Characteristics ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{VDD}=1.8$ to 5.5 V)

Parameter	Symbol	Test Conditions			MIN.	TYP.	MAX.	Unit
Output current, low	IoL	Per pin					15	mA
		For all pins					150	mA
Input voltage, high	V_{1+1}	Ports 2, 3, 8		2.7 V $\leq \mathrm{V}_{\text {do }} \leq 5.5 \mathrm{~V}$	0.7 VDD		Vdo	V
				$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$	0.9 VDD		VDD	V
	V_{1+2}	Ports $0,1,6,7, \overline{\text { RESET }}$		$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$	0.8 VDD		VDD	V
				$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$	0.9 VDD		VDD	V
	VIH3	Port 5	Pull-up resistor incorporated	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$	0.7 VDD		VDD	V
				$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$	0.9 VDD		VDD	V
			N-ch open drain	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$	0.7 VDD		13	V
				$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$	0.9 VDD		13	V
	$\mathrm{V}_{1 \mathrm{H} 4}$	X1			Vdo-0.1		Vod	V
Input voltage, low	VIL1	Ports 2, 3, 5, 8		2.7 V $\leq V_{\text {D }} \leq 5.5 \mathrm{~V}$	0		0.3 VDD	V
				$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$	0		0.1 VDD	V
	VIL2	Ports 0, 1, 6, 7, $\overline{\mathrm{RESET}}$		$2.7 \mathrm{~V} \leq \mathrm{V}_{\text {do }} \leq 5.5 \mathrm{~V}$	0		0.2 VDD	V
				1.8 V $\leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$	0		0.1 VDD	V
	VIL3				0		0.1	V
Output voltage, high	Vон	$\overline{\text { SCK, SO, ports 2, 3, 6, 7, } 8 \quad \mathrm{lor}=-1 \mathrm{~mA}}$			VDD-0.5			V
Output voltage, low	VoL1			$\begin{aligned} & \mathrm{loL}=15 \mathrm{~mA} \\ & \mathrm{VDD}=5 \mathrm{~V} \pm 10 \% \end{aligned}$		0.2	2.0	V
				$\mathrm{loL}=1.6 \mathrm{~mA}$			0.4	V
	VoL2	SB0	N -ch open-drain pull-up resistor $\geq 1 \mathrm{k} \Omega$				0.2 VDD	V
Input leak current, high	LııH1	$V_{\text {I }}=\mathrm{V}_{\text {D }}$	Pins other than X1				3	$\mu \mathrm{A}$
	ІІІН2		X1				20	$\mu \mathrm{A}$
	Іьнз	$\mathrm{V}_{\mathrm{I}}=13 \mathrm{~V}$	Port 5 (N-ch open drain)				20	$\mu \mathrm{A}$
Input leak current, low	ILLL1	$\mathrm{V}_{1}=0 \mathrm{~V}$	Pins other than X1 and port 5				-3	$\mu \mathrm{A}$
	ILıL		X1				-20	$\mu \mathrm{A}$
	ILLI3		Port 5 (N-ch open drain) Other than input instruction execution time				-3	$\mu \mathrm{A}$
			Port 5 (N-ch open drain) Input Input instruction execution time				-30	$\mu \mathrm{A}$
						-10	-27	$\mu \mathrm{A}$
						-3	-8	$\mu \mathrm{A}$
Output leak current, high	ILOH1	$V_{0}=V_{D D}$	$\overline{\mathrm{SCK}}, \mathrm{SO} / \mathrm{SB} 0$, ports 2, 3, 6, 7, 8 , port 5 (with on-chip pull-up resistor)				3	$\mu \mathrm{A}$
	ILOH2	V o $=13 \mathrm{~V}$	Port 5 (N-ch open drain)				20	$\mu \mathrm{A}$
Output leak current, low	Itol	$\mathrm{V}_{0}=0 \mathrm{~V}$					-3	$\mu \mathrm{A}$
On-chip pull-up resistor	RL1	$\mathrm{V}_{1}=0 \mathrm{~V}$	Ports 0 to 3 and 6 to 8 (except P00 pin)		50	100	200	$\mathrm{k} \Omega$
	RL2		Port 5		15	30	60	k Ω

DC Characteristics ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{VDD}=1.8$ to 5.5 V)

Parameter	Symbol	Test Conditions			MIN.	TYP.	MAX.	Unit
Supply current ${ }^{\text {Note1 }}$	IDD1 IdD2	$6.00 \mathrm{MHz}$ Crystal resonator $\mathrm{C} 1=\mathrm{C} 2=22 \mathrm{pF}$	$V_{D D}=5.0 \mathrm{~V} \pm 10 \%{ }^{\text {Note2 }}$			1.50	5.00	mA
			VDD $=3.0 \mathrm{~V} \pm 10 \%{ }^{\text {Note3 }}$			0.33	1.00	mA
			HALT mode	$V_{D D}=5.0 \mathrm{~V} \pm 10 \%$		0.61	1.85	mA
				$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V} \pm 10 \%$		0.24	0.75	mA
	IDD1 IdD2	$4.19 \mathrm{MHz}$ Crystal resonator $\mathrm{C} 1=\mathrm{C} 2=22 \mathrm{pF}$	$V_{D D}=5.0 \mathrm{~V} \pm 10 \%{ }^{\text {Note2 }}$			1.20	3.50	mA
			$V_{D D}=3.0 \mathrm{~V} \pm 10 \%{ }^{\text {Note3 }}$			0.17	0.55	mA
			HALT mode ${ }^{\text {V }}$	$V_{D D}=5.0 \mathrm{~V} \pm 10 \%$		0.40	1.50	mA
				$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V} \pm 10 \%$		0.13	0.50	mA
	IdD5	STOP mode	$V_{D D}=5.0 \mathrm{~V} \pm 10 \%$			0.05	10.0	$\mu \mathrm{A}$
			$V \mathrm{DD}=3.0 \mathrm{~V} \pm 10 \%$			0.02	5.00	$\mu \mathrm{A}$
				$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		0.02	3.00	$\mu \mathrm{A}$

Notes 1. Does not include current fed to on-chip pull-up resistor.
2. When processor clock control register (PCC) is set to 0011, during high-speed mode.
3. When PCC is set to 0000 , during low-speed mode.

AC Characteristics ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=1.8$ to 5.5 V)

Parameter	Symbol	Test Conditions		MIN.	TYP.	MAX.	Unit
CPU clock cycle time Note1 (Minimum instruction execution time $=1$ machine cycle)	tcy	When system clock is used	$V_{D D}=2.7$ to 5.5 V	0.67		64	$\mu \mathrm{s}$
				0.95		64	$\mu \mathrm{s}$
TIO, TI1 input frequency	${ }_{\text {f }}$	$V_{D D}=2.7$ to 5.5 V		0		1	MHz
				0		275	kHz
TIO, TI1 input high- and low-level width	ttile, till	$V_{D D}=2.7$ to 5.5 V		0.48			$\mu \mathrm{s}$
				1.8			$\mu \mathrm{s}$
Interrupt input high- and low-level width	tinth, tintl	INTO	$\mathrm{IM} 02=0$	Note 2			$\mu \mathrm{s}$
			$\mathrm{IM} 02=1$	10			$\mu \mathrm{s}$
		INT1, 2, 4		10			$\mu \mathrm{s}$
		KR0-7		10			$\mu \mathrm{s}$
$\overline{\text { RESET }}$ low-level width	trsL			10			$\mu \mathrm{s}$

Notes 1. The CPU clock (Φ) cycle time (minimum instruction execution time) is determined by the ocillation frequency of the connected resonator and the processor clock control register (PCC). The figure on the right shows the cycle time tcy characteristics against the supply voltage VDD when the system clock is used.
2. 2 tcy or $128 / \mathrm{fx}$ depending on the setting of the interrupt mode register (IMO).

Serial Transfer Operation

2-wire and 3-wire Serial I/O Mode ($\overline{\mathrm{SCK}} . .$. Internal clock output) ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85{ }^{\circ} \mathrm{C}, \mathrm{VdD}=1.8$ to 5.5 V)

Parameter	Symbol	Test Conditions		MIN.	TYP.	MAX.	Unit
$\overline{\text { SCK }}$ cycle time	tkcy	$\mathrm{V}_{\mathrm{DD}}=2.7$ to 5.5 V		1300			ns
				3800			ns
$\overline{\text { SCK }}$ high- and low-level width	tkL1, tкн1	$V_{D D}=2.7$ to 5.5 V		tkcyı1/2-50			ns
				tkcry/2-150			ns
SINote1 setup time (to $\overline{\mathrm{SCK}} \uparrow$)	tsıK1	$V_{\text {DD }}=2.7$ to 5.5 V		150			ns
				500			ns
SINote1 hold time (from SCK \uparrow)	tksı11	$V_{D D}=2.7$ to 5.5 V		400			ns
				600			ns
$\begin{aligned} & \hline \overline{\mathrm{SCK}} \downarrow \rightarrow \mathrm{SO}^{\text {Note } 1} \\ & \text { output delay time } \end{aligned}$	tksor	$\mathrm{R}=1 \mathrm{k} \Omega, \mathrm{C}=100 \mathrm{pF}$ Note2	$V_{\text {DD }}=2.7$ to 5.5 V	0		250	ns
				0		1000	ns

Notes 1. SBO in the 2-wire serial I/O mode.
2. R and C are the load resistance and load capacitance of the SO output line.

2-wire and 3-wire Serial I/O Mode ($\overline{\mathrm{SCK}} . .$. External clock input) ($\mathrm{T}_{\mathrm{A}}=-40$ to $+8{ }^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=1.8$ to 5.5 V)

Parameter	Symbol	Test Conditions		MIN.	TYP.	MAX.	Unit
$\overline{\text { SCK }}$ cycle time	tkcy2	$V_{\text {D }}=2.7$ to 5.5 V		800			ns
				3200			ns
$\overline{\text { SCK }}$ high- and low-level width	tкц2, tкн2	$V_{\text {DD }}=2.7$ to 5.5 V		400			ns
				1600			ns
SINote1 setup time (to $\overline{\mathrm{SCK}} \uparrow$)	tsik2	$\mathrm{V}_{\mathrm{DD}}=2.7$ to 5.5 V		100			ns
				150			ns
SINote1 hold time (from $\overline{\mathrm{SCK}} \uparrow$)	tks12	$V_{\text {DD }}=2.7$ to 5.5 V		400			ns
				600			ns
$\begin{aligned} & \overline{\text { SCK }} \downarrow \rightarrow \text { SO Note } 1 \\ & \text { output delay time } \end{aligned}$	tksoz	$\mathrm{R}=1 \mathrm{k} \Omega, \mathrm{C}=100 \mathrm{pF}$ Note2	$V_{\text {DD }}=2.7$ to 5.5 V	0		300	ns
				0		1000	ns

Notes 1. SBO in the 2-wire serial I/O mode.
2. R and C are the load resistance and load capacitance of the SO output line.

AC Timing Test Points (Excluding X1 Input)

Note For the values, refer to the DC Characteristics.

Clock Timing

TIO, TI1 Timing

TIO, TI1

Serial Transfer Timing

3-wire Serial I/O Mode

2-wire Serial I/O Mode

Interrupt Input Timing

$\overline{\text { RESET }}$ Input Timing

Data Memory STOP Mode Low-Supply Voltage Data Retention Characteristics ($\mathrm{T}_{\mathrm{A}}=\mathbf{- 4 0}$ to $+85^{\circ} \mathrm{C}$)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Release signal set time	tspel		0			$\mu \mathrm{s}$
Oscillation stabilization wait time Note1	twait	Release by RESET		Note2		ms
		Release by interrupt request		Note3		ms

Notes 1. The oscillation stabilization wait time is the time during which the CPU operation is stopped to avoid unstable operation at oscillation start.
2. $2^{17} / \mathrm{fx}$ and $2^{15} / \mathrm{fx}$ can be selected with mask option.
3. Depends on setting of basic interval timer mode register (BTM) (see table below).

BTM3	BTM2	BTM1	BTM0	Wait Time	
				When $\mathrm{fx}=4.19 \mathrm{MHz}$	When $\mathrm{fx}=6.0 \mathrm{MHz}$
-	0	0	0	220/fx (Approx. 250 ms)	$2^{20} / \mathrm{fx}$ (Approx. 175 ms)
-	0	1	1	217/fx (Approx. 31.3 ms)	217/fx (Approx. 21.8 ms)
-	1	0	1	$2^{15 / f x}$ (Approx. 7.81 ms)	215/fx (Approx. 5.46 ms)
-	1	1	1	$2^{13} / \mathrm{fx}$ (Approx. 1.95 ms)	$2^{13} / \mathrm{fx}$ (Approx. 1.37 ms)

* Data Retention Timing (on releasing STOP mode by $\overline{\text { RESET }}$

* Data Retention Timing (Standby release signal: on releasing STOP mode by interrupt signal)

13. CHARACTERISTICS CURVES (REFERENCE VALUES)

Idd vs Vod (System Clock: 4.19-MHz Crystal Resonator)

14. PACKAGE DRAWING

36 PIN PLASTIC SHRINK SOP (300 mil)

detail of lead end

NOTE

Each lead centerline is located within 0.10 mm (0.004 inch) of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS	INCHES
A	15.54 MAX.	0.612 MAX.
B	0.97 MAX.	0.039 MAX.
C	0.8 (T.P.)	0.031 (T.P.)
D	$0.35_{-0.05}^{+0.10}$	$0.014_{-0.003}^{+0.004}$
E	0.125 ± 0.075	0.005 ± 0.003
F	1.8 MAX.	0.071 MAX.
G	1.55	0.061
H	7.7 ± 0.3	0.303 ± 0.012
I	5.6	0.220
J	1.1	0.043
K	$0.20_{-0.05}^{+0.10}$	$0.008_{-0.002}^{+0.004}$
L	0.6 ± 0.2	$0.024_{-0.009}^{+0.008}$
M	0.10	0.004
N	0.10	0.004

15. RECOMMENDED SOLDERING CONDITIONS

The μ PD754304 should be soldered and mounted under the following recommended conditions.
For the details of the recommended soldering conditions, refer to the document Semiconductor Device Mounting Technology Manual (C10535E).

For soldering methods and conditions other than those recommended below, contact your NEC sales representative.

Table 15-1. Surface Mounting Type Soldering Conditions
μ PD754302GS- $\times \times \times$: 36-pin plastic shrink SOP ($300 \mathrm{mil}, 0.8-\mathrm{mm}$ pitch)
μ PD754304GS- $\times \times \times$: 36-pin plastic shrink SOP ($300 \mathrm{mil}, 0.8-\mathrm{mm}$ pitch)
μ PD754302GS(A)- $\times \times \times$: 36-pin plastic shrink SOP ($300 \mathrm{mil}, 0.8-\mathrm{mm}$ pitch)
μ PD754304GS(A)- $\times \times \times$: 36-pin plastic shrink SOP ($300 \mathrm{mil}, 0.8-\mathrm{mm}$ pitch)

Soldering Method	Soldering Conditions	Symbol
Infrared rays reflow	Package peak temperature: $235^{\circ} \mathrm{C}$, Time: 30 seconds max. (at $210^{\circ} \mathrm{C}$ or higher), Count: Twice or less	IR35-00-2
VPS	Package peak temperature: $215^{\circ} \mathrm{C}$, Time: 40 seconds max. (at $200^{\circ} \mathrm{C}$ or higher), Count: Twice or less	VP15-00-2
Wave soldering	Solder temperature: $260^{\circ} \mathrm{C}$ or below, Time: 10 seconds max., Count: Once, Preheating temperature: $120^{\circ} \mathrm{C}$ MAX. (package surface temperature)	WS60-00-1
Partial heating	Pin temperature: $300^{\circ} \mathrm{C}$ or below, Time: 3 seconds max. (per pin row)	-

[^0]
APPENDIX A. COMPARISON OF FUNCTIONS AMONG μ PD750004, 754304, AND 75P4308

	Item	$\mu \mathrm{PD} 750004$	$\mu \mathrm{PD} 754304$	μ PD75P4308
Program memory		Mask ROM 0000H-0FFFH $\text { (4096 } \times 8 \text { bits })$	Mask ROM 0000H-0FFFH $\text { (} 4096 \times 8 \text { bits) }$	One-time PROM 0000H-1FFFH (8192 $\times 8$ bits)
Data memory		000H-1FFH (512 $\times 4$ bits)	000H-0FFH (256×4 bits)	
CPU		75XL CPU		
Instruction execution time	w/main system clock	- $0.67,1.33,2.67$, or $10.7 \mu \mathrm{~s}$ (at 6.0 MHz) $\cdot 0.95,1.91,3.81$, or $15.3 \mu \mathrm{~s}$ (at 4.19 MHz)		
	w/subsystem clock	- $122 \mu \mathrm{~s}$ (at 32.768 kHz)	No subsystem clock	
I/O port	CMOS input	8 (of which 7 can be connected with on-chip pull-up resistor via software)		
	CMOS I/O	18 (on-chip pull-up resistor can be connected via software)		
	N -ch open-drain I/O (withstand 13 V)	8 (pull-up resistor can be connected by mask option)	4 (pull-up resistor can be connected by mask option)	4 (no mask option)
	Total	34	30 (no port 4 pins)	
Timer		4 channels - Basic interval timer/ watchdog timer - 8-bit timer/event counter - 8-bit timer - Watch timer	3 channels - Basic interval timer/watchdog timer - 8 -bit timer/event counter 0 ($\mathrm{fx} / 2^{2}$ added) - 8 -bit timer/event counter 1 (TII, $\mathrm{fx} / 2^{2}$ added) (can be used as 16-bit timer/event counter)	
Clock output (PCL)		- $\Phi, 524,262$, or 65.5 kHz (main system clock: 4.19 MHz) - $\Phi, 750,375$, or 93.8 kHz (main system clock: 6.0 MHz)		
BUZ output		Provided	None	
Serial interface		3 modes are supported -3-wire serial I/O mode ... MSB/LSB first selectable - 2-wire serial I/O mode - SBI mode	2 modes are supported - 3-wire serial I/O mode ... MSB/LSB first selectable - 2-wire serial I/O mode	
Watch mode register (WM)		Provided	None	
System clock control register (SCC)				
Suboscillation circuit control register (SOS)				
MBS register		MB0, 1	MB0 only	
Stack area (SBS1, 0)				

Item	$\mu \mathrm{PD} 750004$	μ PD754304	$\mu \mathrm{PD} 75 \mathrm{P} 4308$
TM0, 1 registers	Bits 0,1 , and 7 are fixed to 0	-	
Vectored interrupt	External: 3, internal: 4		
Test input	External: 1, internal: 1	External: 1	
Test enable flag (IEW)	Provided	None	
Test request flag (IRQW)			
Supply voltage	$V_{\text {DD }}=2.2$ to 5.5 V	$V_{D D}=1.8$ to 5.5 V	
Operating ambient temperature	$\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$		
Package	- 42-pin plastic shrink DIP (600 mil) - 44-pin plastic QFP $(10 \times 10 \mathrm{~mm})$	- 36-pin plastic shrink SOP (300 mil, 0.8-mm pitch)	

APPENDIX B. DEVELOPMENT TOOLS

The following development tools are available for development of application systems using the μ PD754304. In the 75XL Series, a common relocatable assembler is used in combination with a device file dedicated to each model.

Language processor

RA75X relocatable assembler	Host machine			Order code (part number)
		OS	Supply media	
	PC-9800 series	MS-DOS ${ }^{\text {TM }}$	3.5" 2HD	μ S5A13RA75X
		$\binom{\text { Ver. } 3.30 \text { to }}{\text { Ver. } 6.2^{\text {Note }}}$	5" 2HD	μ S5A10RA75X
	IBM PC/AT ${ }^{\text {TM }}$ or compatible machine	Refer to "OS for IBM PC"	3.5" 2HC	μ S7B13RA75X
			5" 2HC	μ S7B10RA75X

Device file	Host machine			Order code (part number)
		OS	Supply media	
	PC-9800 series	MS-DOS	3.5" 2HD	μ S5A13DF754304
		$\binom{\text { Ver. } 3.30 \text { to }}{\text { Ver. } 6.2^{\text {Note }}}$	5" 2HD	μ S5A10DF754304
	IBM PC/AT or compatible machine	Refer to "OS for IBM PC"	3.5" 2HC	μ S7B13DF754304
			5" 2HC	μ S7B10DF754304

PROM writing tools

Hardware	PG-1500	The PG-1500 is a PROM programmer that can program PROM-contained single-chip microcontrollers in the standalone mode or under control of a host machine, when connected with an accessory board and an optional programmer adapter. It can also program representative PROMs including 256 K -bit to 4 M -bit models.			
	PA-75P4308GS	This is a PROM programmer adapter dedicated to the μ PD75P4308GS and connected to the PG-1500.			
Software	PG-1500 controller	This connects the PG-1500 and a host machine with a serial or parallel interface to control the PG-1500 from the host machine.			
		Host machine	OS	Supply media	Order code (part number)
		PC-9800 series	MS-DOS	3.5" 2HD	μ S5A13PG1500
			$\binom{\text { Ver. } 3.30 \text { to }}{\text { Ver. } 6.2^{\text {Note }}}$	5" 2HD	μ S5A10PG1500
		IBM PC/AT or compatible machine	Refer to "OS for IBM PC"	3.5" 2HD	μ S7B13PG1500
				5" 2HC	μ S7B10PG1500

Note Although Ver.5.00 and later have a task swap function, this function cannot be used with this software.

Remark The operation of the assembler, device file and PG-1500 controller is guaranteed only on the above host machine and OS.

Debugging tools

The in-circuit emulators (IE-75000-R and IE-75001-R) are available as the program debugging tool for the μ PD754304.

The system configurations are described as follows.

Hardware	IE-75000-R Note 1	In-circuit emulator for debugging the hardware and software when developing the application systems that use the 75X series and 75XL series. When developing a μ PD754304 subseries, the emulation board IE-75300-R-EM and emulation probe that are sold separately must be used with the IE-75000-R. By connecting with the host machine and the PROM programmer, efficient debugging can be made. It contains the emulation board IE-75000-R-EM which is connected.			
	IE-75001-R	In-circuit emulator for debugging the hardware and software when developing the application systems that use the 75X series and 75XL series. When developing a μ PD754304 subseries, the emulation board IE-75300-R-EM and emulation probe which are sold separately must be used with the IE-75001-R. It can debug the system efficiently by connecting the host machine and PROM programmer.			
	IE-75300-R-EM	Emulation board for evaluating the application systems that use a μ PD754304 subseries. It must be used with the IE-75000-R or IE-75001-R.			
	EP-754304GS-R EV-9500GS-36	Emulation probe for the μ PD754304GS. It must be connected to IE-75000-R (or IE-75001-R) and IE-75300-R-EM. It is supplied with the flexible board EV-9500GS-36 which facilitates connection to a target system.			
Software	IE control program	Connects the IE-75000-R or IE-75001-R to a host machine via RS-232-C and Centronix I/F and controls the IE-75000-R or IE-75001-R on a host machine.			
		Host machine	OS	Supply media	Order code (Part number)
		PC-9800 series	$\begin{gathered} \text { MS-DOS } \\ \binom{\text { Ver. } 3.30 \text { to }}{\text { Ver. 6.2 }} \end{gathered}$	3.5" 2HD	μ S5A13IE75X
				5" 2HD	μ S5A10IE75X
		IBM PC/AT or compatible machine	Refer to "OS for IBM PC"	3.5" 2HC	μ S7B13IE75X
				5" 2HC	μ S7B10IE75X

Notes 1. Maintenance parts
2. Although Ver. 5.00 and later have a task swap function, this function cannot be used with this software.

Remark Operation of the IE control program is guaranteed only on the above host machines and OSs.

OS for IBM PC
The following IBM PC OS's are supported.

OS	Version
PC DOS	

Note Only English version is supported.

Caution Ver. 5.0 and later have the task swap function, but this function cannot be used for this software.

APPENDIX C. RELATED DOCUMENTS

The related documents indicated in this publication may include preliminary versions. However, preliminary versions are not marked as such.

Device related documents

Document Name	Document Number	
	Japanese	English
μ PDD754302, 754304 Data Sheet	U10797J	This document
μ PD75P4308 Data Sheet	U10909J	U10909E
μ PD754304 User's Manual	U10123J	U10123E
μ PD754304 Instruction Table	IEM-5605	-
75XL Series Selection Guide	U10453J	U10453E

Development tool related documents

Other related documents

Document Name	Document Number	
	Japanese	English
IC Package Manual	C10943X	
Semiconductor Device Mounting Technology Manual	C10535J	C10535E
Quality Grades on NEC Semiconductor Devices	C11531J	IEI-1209
NEC Semiconductor Device Reliability/Quality Control System	C10983J	C10983E
Static Electricity Discharge (ESD) Test	MEM-539	-
Guide to Quality Assurance for Semiconductor Devices	MEI-603	MEI-1202
Microcomputer Related Product Guide - Other Manufacturers	MEI-604	-

Caution These documents are subject to change without notice. Be sure to read the latest documents.
[MEMO]

NOTES FOR CMOS DEVICES

(1) PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note: Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

(2) HANDLING OF UNUSED INPUT PINS FOR CMOS

Note: No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS device behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

(3) STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note: Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC product in your application, please contact the NEC office in your country to obtain a list of authorized representatives and distributors. They will verify:

- Device availability
- Ordering information
- Product release schedule
- Availability of related technical literature
- Development environment specifications (for example, specifications for third-party tools and components, host computers, power plugs, AC supply voltages, and so forth)
- Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary from country to country.

NEC Electronics Inc. (U.S.)
Santa Clara, California
Tel: 800-366-9782
Fax: 800-729-9288
NEC Electronics (Germany) GmbH
Duesseldorf, Germany
Tel: 0211-65 0302
Fax: 0211-65 03490
NEC Electronics (UK) Ltd.
Milton Keynes, UK
Tel: 01908-691-133
Fax: 01908-670-290
NEC Electronics Italiana s.r.1.
Milano, Italy
Tel: 02-66 7541
Fax: 02-66 754299

NEC Electronics (Germany) GmbH
Benelux Office
Eindhoven, The Netherlands
Tel: 040-2445845
Fax: 040-2444580
NEC Electronics (France) S.A.
Velizy-Villacoublay, France
Tel: 01-30-67 5800
Fax: 01-30-67 5899
NEC Electronics (France) S.A.
Spain Office
Madrid, Spain
Tel: 01-504-2787
Fax: 01-504-2860
NEC Electronics (Germany) GmbH
Scandinavia Office
Taeby, Sweden
Tel: 08-63 80820
Fax: 08-63 80388

NEC Electronics Hong Kong Ltd.
Hong Kong
Tel: 2886-9318
Fax: 2886-9022/9044
NEC Electronics Hong Kong Ltd.
Seoul Branch
Seoul, Korea
Tel: 02-528-0303
Fax: 02-528-4411
NEC Electronics Singapore Pte. Ltd.
United Square, Singapore 1130
Tel: 253-8311
Fax: 250-3583
NEC Electronics Taiwan Ltd.
Taipei, Taiwan
Tel: 02-719-2377
Fax: 02-719-5951
NEC do Brasil S.A.
Sao Paulo-SP, Brasil
Tel: 011-889-1680
Fax: 011-889-1689

MS-DOS is a trademark of Microsoft Corporation.
 IBM DOS, PC/AT, and PC DOS are trademarks of IBM Corporation.

Abstract

The export of this product from Japan is regulated by the Japanese government. To export this product may be prohibited without governmental license, the need for which must be judged by the customer. The export or re-export of this product from a country other than Japan may also be prohibited without a license from that country. Please call an NEC sales representative.

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.
NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.
While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.
NEC devices are classified into the following three quality grades:
"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.

Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.
The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance.
Anti-radioactive design is not implemented in this product.

[^0]: Caution Do not use different soldering methods together (except for partial heating).

